字吉不吉利,數(shù)字推理規(guī)律總結.jpg)
來源頭條作者:金榜題名在今朝三,冪次數(shù)列規(guī)律總結(一)1次化冪次數(shù)列規(guī)律總結規(guī)律1:底數(shù)是以-1為首的連續(xù)自然數(shù),指數(shù)是以0為首的連續(xù)自然數(shù)。例1:1,0,1,8,81,(1024)規(guī)律2:底數(shù)是以4為首的連續(xù)自然數(shù),指數(shù)是以4為首數(shù),公差為-2的等差數(shù)列。例1:256,25,1,1/49,(1/4096)思路:此例子,底數(shù)5和7中間隔一項,自然想到6。規(guī)律3:底數(shù)是以1為首的連續(xù)自然數(shù),指數(shù)是以0為首的連續(xù)自然數(shù)。例1:1,2,9,64,625,(7776)思路:(關鍵點)64和625的不同次冪的表達方法,哪種可形成規(guī)律。規(guī)律4:底數(shù)是單調遞增連續(xù)自然數(shù),指數(shù)是單調遞減連續(xù)自然數(shù)。例1:1,32,81,64,25,(6)規(guī)律5:底數(shù)恒2,指數(shù):a2-a1=首項為1的連續(xù)自然數(shù)。例1:1,2,8,(64),1024,,,,,,規(guī)律6:底數(shù)是首項為1,公差為2的等差數(shù)列,指數(shù)是首項為3的單調遞減連續(xù)自然數(shù)。例1:1,9,5,1,1/9,(1/121)規(guī)律7:底數(shù)是首項為6的連續(xù)遞減自然數(shù),指數(shù)為首項為1的連續(xù)自然數(shù)。例1:6,25,64,(81),32,1(二)冪次修正數(shù)列規(guī)律總結規(guī)律1:An=3的n次冪+m【n為連續(xù)自然數(shù),m為修正數(shù)列(a2-a1=公差為10,首項為20的等差數(shù)列)】。例1:153,179,227,321,533,(1079)規(guī)律2:n的n次冪-1(n為以1為首的連續(xù)自然數(shù))。例1:0,3,26,255,(3124)思路:(特征)項數(shù)少,周圍有冪次。規(guī)律3:冪次數(shù)列規(guī)律:底數(shù)是以2為首的連續(xù)自然數(shù),當?shù)讛?shù)為偶數(shù)時,指數(shù)為3;當?shù)讛?shù)為奇數(shù)時,指數(shù)為2。修正項:+1。例1:9,10,65,26,217,(50)規(guī)律4:n的立方-2(n為首項為2,公差為2的等差數(shù)列);修正項:-2。例1:6,62,214,(510)規(guī)律5:冪次數(shù)列規(guī)律:底數(shù)是以1為首的連續(xù)自然數(shù),指數(shù)是以0為首的連續(xù)自然數(shù)。修正項:以0為首的連續(xù)自然數(shù)。例1:1,3,11,67,629,(7781)規(guī)律6:a1的平方-(首項為1,公比為2的等比數(shù)列)=a2例1:2,3,7,45,2017,(4068275)規(guī)律7:冪次修正數(shù)列例1:-344,17,-2,5,(124),65思路:-344=-7的立方-1 17=-4的平方+1 -2=-1的立方-1 5=-2的平方+1規(guī)律8:n的立方+-n例1:2,6,30,60,130,210,(350)思路:思考與30相近的冪次是27,在考慮27+3=30,而27是3的立方,則3的立方+3。四,因式分解數(shù)列規(guī)律總結因式分解特征:偶數(shù)多,若不都是偶數(shù),那就還有可能都是合數(shù)。規(guī)律1:連續(xù)自然數(shù)*質數(shù)數(shù)列=因式分解數(shù)列例1:10,21,44,65,(102)規(guī)律2:連續(xù)自然數(shù)+質數(shù)數(shù)列=因式分解數(shù)列例1:3,5,8,11,16,19,(24)規(guī)律3:前項+后項=首項為3,公差為2的等差數(shù)列。例1:2,4,10,18,28,(42),56規(guī)律4:前項*后項=因式分解數(shù)列(前項以6為首的連續(xù)遞減自然數(shù),后項為以1為首,公比為2的等比數(shù)列)。例1:6,10,16,24,32,(32)思路:從唯一分解數(shù)10入手。規(guī)律5:3*質數(shù)數(shù)列+1=因式分解數(shù)列例1:7,10,16,22,34,(40)詳解:3*2+1=7 3*3+1=10 3*5+1=16 3*7+1=22 3*11+1=34 3*13+1=40思路:1,a2-a1=因式分解數(shù)列(3*1,3*2,3*2,3*4);2,出現(xiàn)1,2,2,4要想到質數(shù)數(shù)列2,3,5,7,11,13(質數(shù)數(shù)列前項-后項=1,2,2,4)規(guī)律6:4*質數(shù)數(shù)列=因式分解數(shù)列例1:44,52,68,76,92,(116)五,小數(shù)數(shù)列規(guī)律總結小數(shù)數(shù)列思路:整體部分與小數(shù)部分分別看。小數(shù)數(shù)列特征:有小數(shù)點。規(guī)律1:整數(shù)部分:以0為首的連續(xù)自然數(shù)的平方,小數(shù)部分:以0為首,公差為2的等差數(shù)列。例1:0,1.2,4.4,(9.6),16.8,(25.10),36.12機械小數(shù)數(shù)列規(guī)律2:整數(shù)部分:因式分解(3*0,4*1,5*4,6*9 ),小數(shù)部分:2,04,008,0016,進一位等比數(shù)列。例1:0.2,4.04,20.008,(54.0016)規(guī)律3:數(shù)位為偶數(shù)項:整數(shù)=小數(shù)*2+1;數(shù)位為奇數(shù)項:小數(shù)*2。例1:4.2,5.2,8.4,17.8,44.22,(125.62)規(guī)律4:整數(shù)部分:(遞推和)a1+a2=a3,小數(shù)部分:(遞推和)a1+a2=a3。例1:2.02,3.01,5.03,8.04,(13.07)規(guī)律5:整數(shù)部分:a2-a1Ta1*2+1=a2,小數(shù)部分:恒1。例1:0.1,3.1,10.1,25.1,(56.1)規(guī)律6:a2-a1=整數(shù)部分:首項為8,公差為2的等差數(shù)列,小數(shù)部分恒2。例1:12.7,20.9,31.1,43.3,(57.5)昔日齷齪不足夸,今朝曠蕩恩無涯。春風得意馬蹄疾,一日看盡長安花。金榜題名后便是放飛自我之時,掃一掃添加下方二維碼,我們一起去旅行[比心]掃一掃 加一加
暫時沒有評論,來搶沙發(fā)吧~